تخمین نفوذپذیری نهایی خاکها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
Authors: not saved
Abstract:
نفوذپذیری یکی از مهمترین پارامترهای فیزیکی خاکها و از دادههای بنیادی طرحهای آبیاری و زهکشی است. اگرچه برای توصیف این پدیده، تاکنون روشها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبههای تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکههای عصبی مصنوعی در پیشبینی این پدیده، جای تحقیق و بررسی وجود دارد. در تمام روشهای موجود برای تعیین روابط نفوذ، انجام آزمایشهای زمانبر و پرهزینه صحرایی الزامی است. همچنین وجود عبارتهای غیرخطی در روابط حاکم بر پدیده نفوذپذیری، مدلسازی آن را امری مشکل نموده است. از طرفی امروزه توانمندیهای روش شبکههای عصبی مصنوعی در مدلسازی مسایل غیرخطی باعث شده تا در علوم مختلف مهندسی به موازات کاربرد روشهای متداول، از روش شبکههای عصبی نیز استفاده شود. درتحقیق حاضر شبکههای عصبی مصنوعی بهعنوان روشی جدید بهمنظور تخمین مقادیر نفوذپذیری نهایی خاکها بهکار گرفته شده است. در این تحقیق در مدل شبکه عصبی مصنوعی تهیه شده، پارامترهای فیزیکی خاک از جمله درصد مواد آلی، وزن مخصوص حقیقی و ظاهری، تخلخل و همچنین پارامترهای شیمیایی آن نظیر اسیدیته و میزان سدیم بهعنوان ورودی و در مقابل مقادیر نفوذپذیری نهایی خاک بهعنوان پارامتر خروجی مدل لحاظ شدهاند. همچنین یک مدل آماری براساس رگرسیونهای چندمتغیره تهیه و خروجیهای مدل شبکه عصبی و مدل آماری با مقادیر واقعی اندازهگیری شده و با کاربرد معیار ضرایب همبستگی مقایسه شده است. نتایج این تحقیق نشان داد که مدلهای شبکه عصبی مصنوعی با دقت بسیار بالا و قابلقبولی توانایی تخمین و پیشبینی مقادیر نفوذپذیری نهایی خاکها را براساس پارامترهای زود یافت خاک دارند. وجه تمایز این تحقیق با سایر تحقیقات مشابه در مدلسازی با شبکههای عصبی مصنوعی آن است که، در این تحقیق علاوهبر کاربرد شبکههای عصبی مصنوعی در مورد نفوذپذیری، توانمندیهای این روش در یافتن دانش الگوریتم در دادههای با حجم پایین نیز به اثبات رسید.
similar resources
مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی
مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...
full textتخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی
بتن یکی از رایجترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا میکند. در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، پارامترهای شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامترها در طراحی سازههای سطحی و زیرسطحی از اهمیت ویژهای برخوردار است. در این مقاله مدل شکست بر اساس شبکه عصبی برای تخمین پارامترشکست بتن GF(انرژی مخصوص شکس...
full textتخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی
در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونههای سنگی مورد بررسی قرار گرفته است. اغلب گسیختگیهای رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ میباشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگیها در حفریات سطحی و زیرزمینی از اهمیت ویژهای برخوردار میباشد. بررسی جامع دستاوردهای علمیدر خصوص تعیین سختی برش...
full textتحلیل و پیشبینی روزهای خشک با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: ایستگاه تهران)
شبکههای عصبی مصنوعی بهعنوان یکی از تکنیکهای غیرخطی در مطالعات اقلیمی و هیدرولوژی اهمیت فراوانی بهخود اختصاص دادهاند. تغییراقلیم و بهدنبال آن گرمایش جهانی از پدیدههای اقلیمی به شمار میرود. شمار روزهای خشک و تداوم آن خشکسالی را بهدنبال دارد. در این پژوهش از دادههای بارش روزانه طی سالهای (1976-2008) و شبکه عصبی مصنوعی در نرمافزار MATLAB بهمنظور پیشبینی شمار روزهای خشک ایستگاه تهران ...
full textتخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی
در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونههای سنگی مورد بررسی قرار گرفته است. اغلب گسیختگیهای رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ میباشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگیها در حفریات سطحی و زیرزمینی از اهمیت ویژهای برخوردار میباشد. بررسی جامع دستاوردهای علمی در خصوص تعیین سختی برشی شک...
full textتخمین سرعت نفوذپذیری پایه با استفاده از مدلهای نروفازی، شبکه عصبی و رگرسیون خطی چندمتغیره
ننفوذ یکی از مهمترین مشخصههای فیزیکی خاک است که اندازهگیری مستقیم آن دشوار، زمانبر و پرهزینه میباشد. هدف از این پژوهش تخمین سرعت نفوذپذیری پایه با استفاده مدلهای نروفازی، شبکة مصنوعی و رگرسیون خطی چند متغیره است. بدین منظور، در 100 نقطه در منطقه دهگلان استان کردستان سرعت نفوذپذیری پایه با استفاده از استوانه مضاعف اندازهگیری شد. ویژگیهای فیزیکی خاک (تخلخل، جرم ویژه ظاهری، شن، سیلت و رس) ...
full textMy Resources
Journal title
volume 16 issue 1
pages 37- 57
publication date 2012-07-25
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023